
BCIM Documentation
Release 0.1

Dan Kolbman

May 28, 2015

Contents

1 Installation 3
1.1 Intstalling Julia . 3
1.2 Python . 3
1.3 Matplotlib and Numpy . 3
1.4 BCIM . 3

2 Examples 5
2.1 Running . 5
2.2 Running on a Cluster . 5
2.3 Quick Example . 5

3 Types 7
3.1 Experiment . 7
3.2 Simulation . 7
3.3 Physical Constants . 8
3.4 Dimensionless Constants . 9
3.5 System . 10
3.6 Part . 10
3.7 Log . 10

i

ii

BCIM Documentation, Release 0.1

Contents:

Contents 1

BCIM Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

BCIM’s simulation portion is written in the Julia programming language. It is built using a relatively recent release of
the development build (0.4). It may work on the current stable release (0.3.6), though it has not been tested.

1.1 Intstalling Julia

The nightly build is recommended as development on BCIM is done on the developmental release branch. Nightlies
can be found on the Julia download page. Better yet, build julia from source using the directions on the Julia github.

1.2 Python

Post processing is done in python 3.6, though any release of python 3 should work. Follow a guide online on
how to install python 3 for your environment.

1.3 Matplotlib and Numpy

BCIM uses Matplotlib for graphics and Numpy for numerical work. Both can be installed using pip:

pip install numpy matplotlib

1.4 BCIM

BCIM can be installed by cloning into the git repository on github:

git clone https://github.com/dankolbman/BCIM
cd BCIM

The src directory will have to be added to your shell path or the src/julia/BCIM.jl module can be inculeded
by absolute reference inside your run files.

3

http://julialang.org/
http://julialang.org/downloads/
https://github.com/JuliaLang/julia#source-download-and-compilation

BCIM Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Examples

2.1 Running

To run a simulation like the example below, Julia must be invoked from the top level directory of the repository (where
the src folder resides), a from a directory that is appropriate for the include statement to find the source files. The
simulation can then be run by passing the script to Julia:

julia examples/num_part.jl

2.2 Running on a Cluster

Using slurm, many identical simulations can be run at once. The following will run the adh.jl script on 10 different
cores with 2048Mb allocated on each.

srun -N 10 -t 2000 –mem-per-cpu=2048 julia runs/vary_params/adh.jl

2.3 Quick Example

The following can be found in examples/num_parts.jl in the source. It creates an experiment with three trials
and runs each one. It then modifies the parameters and creates a new experiment with a different number of particles.
It repeats this three times for three different experiments each with three identical trials.

1 ## Runs a experiments for diffrent numbers of particles
2 # Each experiment consists of three trials
3 # Saves data to data/numparts/ relative to run path
4

5 include("../src/julia/BCIM.jl")
6 #using BCIM
7

8 # Hack to allow asynchronous experiment runs
9 sleep(rand()*10)

10

11 # Our physical constants
12 pc = BCIM.PhysicalConst(1.0e-5, # dt
13 # Packing fraction
14 0.60,
15 # Eta
16 0.01,
17 # Temperature (K)

5

BCIM Documentation, Release 0.1

18 298.0,
19 # Boltzmann constant
20 1.38e-16,
21 # Propulsisions [sp1, sp2]
22 [0.0,1.0e3],
23 # Repulsions [sp1, sp2]
24 [1.5e4,1.5e3],
25 # Adhesions [sp1, sp2, sp1-sp2]
26 [1.5e3, 0.0, 0.0],
27 # Cell division time (0 = no division)
28 [0.01, 0.01],
29 # Efective adhesive contact distance
30 0.1,
31 # Cell diameter
32 15.0e-4,
33 # Number of particles [sp1, sp2]
34 [256,256])
35

36 ##### 256 particles total
37 pc.npart = [128, 128]
38 # Initialize experiment with 3 trials in given directory with desired constants
39 exp = BCIM.Experiment("data/ex/256", 3, pc, false)
40

41 # Run the experiment
42 # Equilibriate for 1000 steps
43 # Collect every 1000 steps
44 # Run for 100000 steps
45 BCIM.run(exp, 1000:1000:100000)
46

47 ##### Run again for 512 particles total
48 pc.npart = [256, 256]
49 exp = BCIM.Experiment("data/ex/512", 3, pc, false)
50 BCIM.run(exp, 1000:1000:100000)
51

52 ##### 1024 particles total
53 pc.npart = [512, 512]
54 exp = BCIM.Experiment("data/ex/1024", 3, pc, false)
55 BCIM.run(exp, 1000:1000:100000)

6 Chapter 2. Examples

CHAPTER 3

Types

3.1 Experiment

The experiment type is used to handle several trials of a simulation. It is responsible for creating paths for the trial
simulations and saving parameters for them.

3.1.1 Functions

Experiment(path, ntrials, pc, timestamp=false)

Parameters

• path – the path to save the experiment directory in

• ntrials – nuber of identical simulations to run

• pc – the physical constants for the simulation systems

• timestamp – whether or not to append current time to the end of the experiment directory.
Useful for avoiding name conflicts and over writing data.

Creates an experiment. Saves the pysical constants, pc, and dimensionless constants calculated from pc, to the
path in .dat format. It creates ntrials number of simulations with parameters deteremined from pc and
paths within the path directory. If timestamp is true, the date is append to the path name.

run(exp, r)

Parameters

• path – the experiment to run

• r – the step values to run each simulation for

Runs an experiment, exp, by invoking run on each trial simulation. r is the range to run each simulation
and is of the format: equilibrium:frequency:steps where equilibrium is the number of steps to
equilibriate the system for, frequency is how often to save the system state, and steps is how many steps
to run for after equilibrium steps have been taken.

3.2 Simulation

The simulation type is used to contstruct a simulation system and run it for a desired amount of steps. It is responsible
for steping the system and performing scheduled analysis of the system state, including writing the state to disk and

7

BCIM Documentation, Release 0.1

calculating statistical quantities for the system.

3.2.1 Functions

Simulation(dir, dc, log)

Parameters

• dir – the directory path where a simulation directory will be created

• dc – Dimensionless constants to be used for the simulation

• log – The log to use for the simulation

Create a simulation. An id is assigned based on the next available directory in dir folling the convention:
dir/trial$id. dc is a dimensionless contant object that is used to initialize the simulation system. log is
a log object for the system to use for logging.

Simulation(id, path, dc, log)

Parameters

• id – a unique integer identifier for the simulation

• path – the directory where the simulation files will be stored

• dc – the dimensionless constants for the simulation

• log – the log to use for the simulation

Creates a simulation. id is a unique identifier for the simulation. path is where the simulation will place
output files. dc is a dimensienless constant object for creating the system with. log is used to log simulation
messages.

run(sim, r)

Parameters

• sim – the simulation to be run

• r – the step parameters to run for

Runs simulation, sim, for range r. r is of the format: equilibrium:frequency:steps where
equilibrium is the number of steps to equilibriate the system for, frequency is how often to save the
system state, and steps is how many steps to run for after equilibrium steps have been taken.

Example

initialize sim for 100 steps, then run for 5000 steps
and take measurements every 1000 steps
run(sim, 100:1000:5000)

3.3 Physical Constants

The PhysicalConst type has many fields describing the physical (dimensional) parameters of the system:

PhysicalConst(dt, phi, eta, temp, boltz, prop, rep, adh, contact, dia, npart, diff, rotdiff)

Parameters

• dt – the time constant

• phi – the packing fration

8 Chapter 3. Types

BCIM Documentation, Release 0.1

• eta – the viscosity

• temp – the system temperature

• boltz – boltzmann’s constant

• prop – the propulsion for each species

• rep – the repulsion for each species

• adh – the adhesion for each species

• contact – the contact distance as a fraction of the diameter

• dia – the diameter of each particle

• npart – the number of particles of each species

• diff – the diffusion

• rotdiff – the rotational diffusion

3.4 Dimensionless Constants

The DimensionlessConst type has many fields corresponding to dimensionless parameters of the system. A dimension-
less type can be invoked by passing it a PhysicalConst type from which it will produce dimensionless parameters
by scaling appropriatly.

DimensionlessConst(dt, phi, eta, temp, boltz, prop, rep, adh, contact, dia, npart, diff, rotdiff, pretrad,
prerotd)

Parameters

• dt – the time constant

• phi – the packing fration

• eta – the viscosity

• temp – the system temperature

• boltz – boltzmann’s constant

• prop – the propulsion for each species

• rep – the repulsion for each species

• adh – the adhesion for each species

• contact – the contact distance as a fraction of the diameter

• dia – the diameter of each particle

• npart – the number of particles of each species

• diff – the diffusion

• rotdiff – the rotational diffusion

• pretrad – the prefactor for translational diffusion

• prerotd – the prefactor for rotational diffusion

3.4. Dimensionless Constants 9

BCIM Documentation, Release 0.1

3.5 System

The System type is used to represent a physical system. It holds a list of particles which it is simulating, the
dimensionless parameters of the system, and a CellGrid which is used to efficiently sort and simulate the particles.

System(dc)

Parameters dc – the dimensionless contstants for the system

Initializes a system using the dimensionless parameters dc. Constructs a cell grid and particles based on the
specification of the parameters.

uniformSphere(dc)

Parameters dc – the dimensionless contstants for the system

Creates a list of particles, the number of which are specified by the npart field of dc, that have been randomly
distributed in a sphere.

step(s)

Parameters s – the system to make a step on

Steps a system s by one step by calling the force calculation function.

assignParts(s)

Parameters s – the system to assign particles in

Assigns particles in a system into Cells in the system’s CellGrid. Called by Simulation during a run
periodically so collision checks can be made efficiently using the cell grid.

3.6 Part

The Part type is used to represent a particle in the system.

Part(id, sp, pos, vel, ang)

Parameters

• id – the particle id

• sp – the particle species

• pos – the position vector of the particle

• vel – the velocity vector of the particle

• ang – the angle vector of the particle

3.7 Log

Log(path, verbose=false)

Parameters

• path – the file to output logs to

• verbose – whether or not to pipe log to STDIN in addition to the file

log(l, output)

10 Chapter 3. Types

BCIM Documentation, Release 0.1

Parameters

• l – the log instance being logged to

• output – the output string to write

3.7. Log 11

BCIM Documentation, Release 0.1

12 Chapter 3. Types

Index

A
assignParts() (built-in function), 10

D
DimensionlessConst() (built-in function), 9

E
Experiment() (built-in function), 7

L
Log() (built-in function), 10
log() (built-in function), 10

P
Part() (built-in function), 10
PhysicalConst() (built-in function), 8

R
run() (built-in function), 7, 8

S
Simulation() (built-in function), 8
step() (built-in function), 10
System() (built-in function), 10

U
uniformSphere() (built-in function), 10

13

	Installation
	Intstalling Julia
	Python
	Matplotlib and Numpy
	BCIM

	Examples
	Running
	Running on a Cluster
	Quick Example

	Types
	Experiment
	Simulation
	Physical Constants
	Dimensionless Constants
	System
	Part
	Log

